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Abstract
Dynamic behavior of weightless rod with a point mass

sliding along the rod axis according to periodic law is
studied. This is the simplest model of child’s swing.
Asymptotic boundaries of stability domains are derived
near resonance frequencies. Regular and chaotic mo-
tions of the swing under change of problem parameters
are found and investigated both analytically and numer-
ically.
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1 Introduction
Oscillations of the swing is one of the classical prob-

lems in mechanics. As probably everyone can remem-
ber, to swing a swing one must crouch when passing
through the middle vertical position and straighten up
at the extreme positions, i.e. perform oscillations with
a frequency which is approximately twice the natu-
ral frequency of the swing. Despite the popularity of
the swing, in the literature on oscillations and stabil-
ity where this problem is referred to [Kauderer, 1958;
Bogolyubov and Mitropol’skii, 1974; Magnus, 1976;
Panovko and Gubanova, 1987; Arnold, 1989; Bolotin,
1999] there are not many analytical and numerical re-
sults on the swing behavior dependent on parameters.
Among recent papers we cite [Seyranian, 2004] on the
stability analysis of the swing.
The present paper is devoted to study of regular and

chaotic motions of the swing. Stability conditions of
vertical position and limit cycles are obtained, and
existence conditions for regular rotations are derived.
These conditions are justified by numerical simula-
tions. Domains for chaotic motions are found and ana-
lyzed in parameter space.

2 Main relations
Equation for motion of the swing is derived with the

use of angular momentum alteration theorem and tak-

ing into account linear damping forces

(ml2θ̇)̇ + γl2θ̇ + mgl sin(θ) = 0, (1)

where m is the mass, l is the length, θ is the angle of
the pendulum deviation from the vertical position, g is
the acceleration due to gravity. The upper dot indicates
the time derivative.
It is assumed that the length of the pendulum changes

according to the periodic law

l = l0 + aϕ(Ωt), (2)

where l0 is the mean pendulum length, a and Ω are the
amplitude and frequency of the excitation, ϕ(τ) is the
smooth periodic function with period 2π and zero mean
value.
We introduce the following dimensionless parameters

and variables

τ = Ωt, ε =
a

l0
, Ω0 =

√
g

l0
, ω =

Ω0

Ω
, β =

γ

mΩ0
.

(3)
Then, equation (1) can be written in the following form

θ̈ +
(

2εϕ̇(τ)
1 + εϕ(τ)

+ βω

)
θ̇ +

ω2 sin(θ)
1 + εϕ(τ)

= 0. (4)

Here the upper dot denotes differentiation with respect
to new time τ . This equation will be studied in the
following sections via asymptotic and numerical tech-
niques depending on the three dimensionless problem
parameters: the excitation amplitude ε, the damping β,
and the frequency ω.

3 Motion at small excitation amplitude
When the excitation amplitude ε is small, we can ex-

pect the amplitude of oscillations also to be small. So,



we can expand the sine into a Taylor’s series around
zero in equation (4). Changing the variable by

q = θ(1 + εϕ(τ)) (5)

in equation (4) and multiplying it by 1 + εϕ(τ) we ob-
tain the equation for q as

q̈ + βωq̇ − ε (ϕ̈(τ) + βωϕ̇(τ))
1 + εϕ(τ)

q

+ω2 sin
(

q

1 + εϕ(τ)

)
= 0. (6)

Let us suppose that ε and β are small parameters as
well as the variable q. Then, neglecting terms of higher
order equation (6) takes the following form

q̈ + βωq̇ +
[
ω2 − ε(ϕ̈(τ) + ω2ϕ(τ))

]
q − ω2

6
q3 = 0.

(7)

3.1 Stability of the vertical position
Let us analyze the stability of the trivial solution q = 0

for the nonlinear equation (7). Its stability with respect
to the variable q is equivalent to that for the equation (4)
with respect to θ due to relation (5). According to the
Lyapunov’s theorem about stability based on the linear
approximation the stability and instability of the solu-
tion q = 0 of the equation with periodic coefficients (7)
is determined by those of the linearized equation

q̈ + βωq̇ +
[
ω2 − ε(ϕ̈(τ) + ω2ϕ(τ))

]
q = 0. (8)

This is a Hill’s equation with damping. It is known that
instability (i.e. parametric resonance) occurs near the
frequencies ω = k/2, where k = 1, 2, . . .. The insta-
bility domains in the vicinity of these frequencies were
obtained in [Seyranian, 2001] analytically. In three-
dimensional space of the parameters ω, ε, and β these
domains are described by the half-cones

(β/2)2+(2ω/k−1)2 < r2
kε2, β ≥ 0, k = 1, 2, . . . ,

(9)
where rk = 3

4

√
a2

k + b2
k is expressed through the

Fourier coefficients of the periodic function ϕ(τ)

ak =
1
π

∫ 2π

0

ϕ(τ) cos(kτ)dτ, (10)

bk =
1
π

∫ 2π

0

ϕ(τ) sin(kτ)dτ. (11)

Inequalities (9) give us the first approximation to the
instability domains. Hence, in the first approxima-
tion each k-th resonant domain depends only on k-th

Fourier coefficients of the periodic excitation function.
Particularly, for ϕ(τ) = cos(τ), k = 1 we obtain
a1 = 1, b1 = 0, and r1 = 3/4 after which the first
instability domain takes the form

β2/4 + (2ω − 1)2 < 9ε2/16, β ≥ 0. (12)

It follows from relation (3) that in physical time the
swing is pumping with the excitation frequency Ω close
to the critical frequencies Ωk = 2Ω0/k, where k =
1, 2, . . ..
Inside the instability domains (9) the vertical position

θ = 0 becomes unstable and motion of the system can
be either regular (limit cycle, regular rotation) or even
chaotic.

3.2 Limit cycle
Limit cycle is a kind of regular motion which can also

be studied with the assumption of small amplitudes of
the system motion. So, we study the parametric excita-
tion ϕ(τ) = cos(τ) of the nonlinear system (6) (hence,
of the system (4)) at the first resonance frequency ω ≈
1/2. We are looking for an approximate solution of
system (6) in the form q(τ) = Q(τ) cos(τ/2 + Ψ(τ))
by using the averaging method for resonant case de-
scribed in the book [Bogolyubov and Mitropol’skii,
1974], where Q(τ) and Ψ(τ) are the slow amplitude
and phase. As a result, we get a system of averaged
first order differential equations for the slow amplitude
and phase

Q̇ = −Qβω

2
+

Qε(1− ω2)
2

sin(2Ψ), (13)

Ψ̇ = ω − 1
2
− Q2ω2

8
+

ε(1− ω2)
2

cos(2Ψ). (14)

This system gives steady solutions for Q̇ = 0, Ψ̇ = 0.
Besides the trivial one with Q = 0 we obtain expres-
sions for the amplitude and phase as

Q2 =
4
ω2

(
2ω − 1∓

√
ε2(1− ω2)2 − β2ω2

)
, (15)

Ψ =
1
2

arctan

(
∓4βω√

ε2(1− ω2)2 − β2ω2

)
+ πj, (16)

where j = . . . ,−1, 0, 1, 2, . . . and “arctan” gives the
major function value lying between zero and π.
In order to find boundaries of the resonance domain

one should put Q = 0 in expression (15). These
boundaries coincide with the boundaries of inequality
(12) which is not a surprise because inequality (12) de-
termines the instability region for the trivial solution
Q = 0. There is an example for ε = 0.04 andβ = 0.05
presented in Fig. 1 of amplitude–frequency response
function (15) in comparison with numerical results (cir-
cles). Fig. 1 shows that we have a good coincidence
with the numerical simulations up to the amplitude
equals 1.
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Figure 1. The amplitude–frequency characteristics for the parame-
ters ε = 0.04 and β = 0.05.

3.3 Stability of the limit cycle
In order to study stability of the periodic solution

q0(τ) = Q cos(τ/2 + Ψ) we substitute it in equa-
tion (7) by the solution with small perturbation q(τ) =
q0(τ) + u(τ), where Q and Ψ are taken from expres-
sions (15) and (16). Thus, in the first approximation we
obtain a linear differential equation for u(τ)

ü+βωu̇+
[
ω2 + ε(1− ω2) cos(τ)− ω2

2
q2
0(τ)

]
u = 0.

(17)
Solution is stable or unstable simultaneously with that
of nonlinear equation (6) according to the Lyapunov’s
theorem about stability based on the linear approxi-
mation. We have got again the Hill’s equation with
damping (17) depending on three parameters ω ≈ 1/2,
β ¿ 1, and ε ¿ 1 with 2π-periodic excitation function

Φ(τ) = (1− ω2) cos(τ)− Q2ω2

2ε
(cos(τ/2 + Ψ))2 .

(18)
The domain of instability for equation (17) in the vicin-
ity of the point ω = 1/2, β = ε = 0 has the following
form [Seyranian, 2001]

β2/4 + (2ω − 1 + a0ε)2 < ε2(a2
1 + b2

1), (19)

where the first Fourier coefficients of the function Φ(τ)
are the following

a0 = −Q2ω2

2ε
, (20)

a1 = 1− ω2 − Q2ω2

4ε
cos(2Ψ), (21)

b1 =
Q2ω2

4ε
sin(2Ψ). (22)

After some transformations we obtain the instability
condition as

∓Q2ω2
√

ε2(1− ω2)2 − β2ω2 < 0 (23)

which tells us that periodic solution (15), (16) with the
sign plus is stable and that with minus is unstable.

4 Regular rotations
In this section we study regular rotations of the swing.

During the rotation of the swing we obviously can not
suppose θ to be small in equation (4). Let us consider
ω2 as a small parameter having the same order with
the small parameters ε and β, which makes the system
quasi-linear. Then, general equation (4) can be rewrit-
ten as a system with small excitation

θ̈ = −ε

(
2ϕ̇(τ)θ̇

1 + εϕ(τ)
+

βω

ε
θ̇ +

ω2

ε

sin(θ)
1 + εϕ(τ)

)
.(24)

Variable θ is neither small nor even limited, therefore
we can introduce a new limited variable ψ via substi-
tution θ = bτ + ψ, which is the solution of degenerate
equation (24) θ̈ = 0. Constant b is the mean angular
velocity of the swing rotation.
In order to use the general averaging method [Bo-

golyubov and Mitropol’skii, 1974] we have to write
equation (24) in the form of the first order equation
system with a small right side. For that reason we in-
troduce a new variable v so that ψ̇ =

√
εv, where

√
ε

is considered as a new small parameter. Thus, for the
periodical excitation function ϕ(τ) = cos(τ) we obtain

(
ψ̇
v̇

)
=
√

εX(ψ, v, τ) + (
√

ε)2Y (ψ, v, τ)

+ (
√

ε)3Z(ψ, v, τ) + o((
√

ε)3), (25)

where X , Y , and Z are the vectors with the following
components

X1 = v, X2 = 2b sin(τ)− ω2

ε
sin(bτ + ψ), (26)

Y1 = 0, Y2 = 2v sin(τ)− βω

ε
√

ε
b, (27)

Z1 = 0, Z2 = −b sin(2τ)

+
ω2

ε
sin(bτ + ψ) cos(τ)− βω

ε
√

ε
v. (28)

With the averaging method we find the first, second and
third order approximations of the system. It is the third
approximation of averaged equation where regular ro-
tations with |b| = 1 can be observed.
After taking the third approximation we obtain the dif-

ferential equations for corresponding slow variables V
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Figure 2. Regular rotation with the mean angular velocity being
equal to the excitation frequency (b = 1) for the parameters: ε =
0.28, ω = 0.5, and β = 0.05.

and Ψ

Ψ̇ =
√

εV, (29)

V̇ = −βωV − βωb√
ε
− 3

√
εω2

2
sin(Ψ), (30)

where b = ±1 i.e. the swing rotates counterclockwise
or clockwise at the same frequency as the excitation
(Fig. 2). From equations (29) and (30) we can write the
averaged second order equation as

Ψ̈ + βωΨ̇ +
3εω2

2
sin(Ψ) + βωb = 0. (31)

This equation permits a stationary solution Ψ = Ψ0

with the condition εω sin(Ψ0) = −2βb/3. Thus,
within the interval (−π, π) the stationary solutions for
(31) are

Ψ01 = −b arcsin
2β

3εω
, (32)

Ψ02 = b

(
arcsin

2β

3εω
− π

)
, (33)

which exist only if the following condition is satisfied

∣∣∣∣
β

εω

∣∣∣∣ ≤
3
2
. (34)

Conditions for stationary solutions with |b| = 2
(Fig. 3) and higher values could be obtained based on
the higher order approximations of equation (24) and
the averaging method. Condition (34) is compared with
numerical results in Fig. 4 for mean angular velocity,
where light blue points correspond to the regular swing
rotation with |b| = 1 and yellow points denote that with
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Figure 3. Regular rotation with the mean angular velocity twice as
much as the excitation frequency (b = −2) for the parameters:
ε = 0.44, ω = 0.5, and β = 0.05.
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Figure 4. Mean angular velocity shown on the plane of parameters
ε and ω at damping β = 0.05.

|b| = 2. Dark blue points correspond to zero mean an-
gular velocity of stable equilibria points and limit cy-
cles. The boundary approximation for the regime with
|b| = 1 is drawn with green dashed line. We see that
this line is closer to the lower edge of the light blue
points manifold near ω = 0.8 than it is near ω = 0.3.
It is because the accuracy decreases with the increase
of the small parameter ε in the asymptotic method. It is
possible to obtain more accurate boundary for rotations
with |b| = 1 based on the higher order approximations.

The white solid line bounds the instability domain
(12) of the lower vertical position of the swing. There
are some regular rotation points located outside this do-
main. It means that at these points two stable regimes
coexist: the regular rotation and the stationary position.
Fig. 4 contains points with significantly noninteger

mean angular velocities which is a feature of more
complicated rotational motion. For example, when
pendulum repeatedly rotates twice clockwise and once
counterclockwise, its mean angular velocity can be
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Figure 5. Regular rotation with the mean angular velocity being
equal to one half of the excitation frequency (b = −1/2) for the
parameters: ε = 0.555, ω = 0.5, and β = 0.05.

noninteger (b = −1/2) as in Fig. 5.

4.1 Stability of the regular rotation
In order to get a stability condition for the stationary

solutions (32) and (33) with b = ±1 we add to them a
small perturbation Ψ = Ψ0 + ∆. Then, from (31), (32)
and (33) we obtain a linearized equation for ∆

∆̈ + βω∆̇ +
3εω2

2
cos(Ψ0)∆ = 0. (35)

The roots of a corresponding characteristic equation

p2 + βωp +
3εω2

2
cos(Ψ0) = 0 (36)

all have negative real parts only if εω2 cos(Ψ0) > 0,
and one root of the characteristic equation has a posi-
tive real part if εω2 cos(Ψ0) < 0. Hence, for all param-
eters such that

0 <

∣∣∣∣
β

εω

∣∣∣∣ <
3
2

(37)

solution (32) is stable while solution (33) is unstable.
Thus, we conclude that if the parameters satisfy (37)
there are two stable regular rotations: b = 1 with Ψ01 ∈
(−π/2, 0) and b = −1 with Ψ01 ∈ (0, π/2); and two
unstable rotations: b = 1 with Ψ02 ∈ (−π,−π/2) and
b = −1 with Ψ02 ∈ (π/2, π).
The similar stability condition to (37) has been found

in the book [Bogolyubov and Mitropol’skii, 1974] for
the rotational motion of the pendulum with periodically
moving support.

5 Chaotic motion
Location of chaotic regimes in the space of parameters

ω and ε is shown in Fig. 6 for Liapunov’s exponents,
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Figure 6. Maximal Lyapunov’s exponents shown on the plane of
parameters ε and ω at damping β = 0.05.
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Figure 7. The Poincare map for the parameters ε = 0.3, ω =
0.55 and β = 0.05.

where dark blue regions have zero maximal Liapunov’s
exponent which implies regular motion or stationary
position while all other colors correspond to positive
Liapunov’s exponents which means chaos. The closer
color is to red the greater is the maximal Lyapunov’s
exponent. To be sure that this is chaos indeed rather
than a long transition process, we plot the Poincare
map. In Fig. 7 the Poincare map is shown for the pa-
rameters ε = 0.3, ω = 0.55, which reveals a typical
attractor structure.

6 Conclusion
“Child’s swing” (a pendulum with periodically vary-

ing length) exhibits the diversity of behavior types. We
recognized that the analytical stability boundaries of
the vertical position of the swing and the frequency-
response curve for limit cycles are in a good agree-
ment with the numerical results. We found regular ro-
tations of the swing and derived their stability condi-
tions. These results are also approved numerically. It
is shown that the limit cycles and regular rotations can



coexist with the stable stationary attractor in contrast
with the chaotic regimes which occur only inside the
instability domain of the vertical position.
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