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Scheme of a parametric pendulum
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Equations of motion

mr21
d2θ

dt2
+ c1

dθ

dt
+ mg l(t) sin(θ) = 0 (1)



Dimensionless equation

Three dimensionless parameters and new time τ = Ωt

a =
la
l0
, ω =

Ω0

Ω
, β =

c1
Ω0mr21

, (2)

where

l(t) = l0 + lyϕ(Ωt) ≤ r1, Ω0 =

√
l0 g

r1
.

Dimensionless equation

θ̈ + βωθ̇ + ω2 (1 + aϕ(τ)) sin(θ) = 0, (3)

the upper dot denotes differentiation with respect to new time τ .



Resonances

Function ϕ is a zero mean 2π-periodic excitation function,
ϕ(τ + 2π) = ϕ(τ).

Resonance relative frequencies

ωk =
k

2
, k = 1, 2, . . . .



Resonance domains for ϕ(τ) = cos(τ)

q

a

Ince-Strutt diagram depending on relative eigenfrequency
ω =

√
|q| and relative excitation amplitude a. Black color depicts

the resonance domains for both β = 0.0001 and β = 0.4. Blue
color marks the domains of damping stabilization with β = 0.4.
Red denotes the domain where damping β = 0.4 destabilizes the
vertical position.



Stability of inverted pendulum
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Linearized equation around both θ = 0 and θ = π

η̈ + β
√
|q|η̇ + q (1 + aϕ(τ)) η = 0,

√
|q| = ω. (4)



Schemes of equivalent parametric pendula
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Equations of motion

mr21
d2θ

dt2
+ c1

dθ

dt
+ mg l(t) sin(θ) = 0 , (5)

mr22
d2θ

dt2
+ c2

dθ

dt
+ m r2

(
g − d2y(t)

dt2

)
sin(θ) = 0 . (6)



Conditions for the same equation of motion

ϕ(τ) = −φ̈(τ), l0 =
r21
r2
, ly =

r21 Ω2Y

r2g
,

c1
r21

=
c2
r22
. (7)

where l(t) = l0 + lyϕ(Ωt) ≤ r1, implying the same eigenfrequency

Ω0 =

√
l0 g

r1
=

√
g

r2
.

Three dimensionless parameters and new time τ = Ωt

ε = aω2 =
Ω2
0Y

g
, ω =

Ω0

Ω
, β =

c1
Ω0mr21

=
c2

Ω0mr22
. (8)

Dimensionless equation

θ̈ + βωθ̇ +
(
ω2 + εϕ(τ)

)
sin(θ) = 0, (9)

the upper dot denotes differentiation with respect to new time τ .



Resonance domains for ϕ(τ) = cos(τ), related ε = aω2
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Stability of inverted position for ϕ(τ) = cos(τ)
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Figure: Ince-Strutt diagram for ϕ(τ) = cos(τ) depicts the stability of the
inverted vertical pendulum position, θ = π, depending on relative
eigenfrequency ω =

√
|q| and relative excitation amplitude a (left) or ε

(right). Left and right diagrams are the same up to the transformation
ε = aω2. Black color depicts the resonance domains for both β = 0.0001
and β = 0.4. Blue color marks the domains of damping stabilization with
β = 0.4. While red denotes the domain where damping β = 0.4
destabilizes the vertical position (θ = π).



Stability analysis

Let us perturbed solutions of equations

θ̈ + βωθ̇ + ω2 (1 + aϕ(τ)) sin(θ) = 0,

θ̈ + βωθ̇ +
(
ω2 + εϕ(τ)

)
sin(θ) = 0

by small η, then we have the corresponding linearized equations:

η̈ + βωη̇ ± ω2 (1 + aϕ(τ)) η = 0,

η̈ + βωη̇ ±
(
ω2 + εϕ(τ)

)
η = 0,

where (+) corresponds to the vertical equilibrium position of the
pendulum θ = 0 and (−) to its inverted equilibrium θ = π.

Linear periodic system, (x1, x2)′ = (η, η̇)′

ẋ = G(τ)x , X(0) = I



Stability of a linear periodic system ẋ = G(τ)x , X(0) = I
Asymptotically stable if all Floquet multipliers |ρj | < 1, which are
the eigenvalues of the monodromy matrix F = X(2π).

Floquet multipliers can be found for dim x = 2 as follows

ρ1 =
tr F +

√
(tr F )2 − 4 detF

2
, ρ2 =

tr F −
√

(tr F )2 − 4 detF

2
.

Condition (|ρ1| < 1 and |ρ2| < 1) of asymptotic stability

(i) If (tr F )2 ≥ 4 detF , then | tr F | < 1 + detF < 1.

(ii) If (tr F )2 < 4 detF , then detF < 1.

These are static and dynamic forms of loosing stability: divergence
(i) and flatter (ii). By Liouville’s theorem detF < 1:

detF = exp

(∫ 2π

0
trG(τ)dτ

)
= exp(−2πβω),



Stability of a linear periodic system ẋ = G(τ)x , X(0) = I

Pendulum with vibrating mass center

G(τ) =

(
0 1

∓ω2 (1 + aϕ(τ)) −βω

)
.

Pendulum with vibrating pivot

G(τ) =

(
0 1

∓
(
ω2 + εϕ(τ)

)
−βω

)
.



Stepwise excitation
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Stepwise excitation function ϕ(τ) = π
4 sign(cos(τ)) (solid line, top)

compared with excitation by its first harmonic ϕ(τ) = cos(τ)
(dashed line, top) and comparison of their corresponding
zero-mean second anti-derivatives φ(τ) (bottom).



Stability analysis with stepwise excitation
Monodromy matrix for piecewise constant excitation can be
calculated analytically as multiplication of two matrix exponents

F = exp(G (π)) exp(G (0)),

where matrices of the linearized systems are the following:

Pendulum with vibrating mass center

G(0) =

(
0 1

∓ω2
(
1 + aπ

4

)
−βω

)
, G(π) =

(
0 1

∓ω2
(
1− aπ

4

)
−βω

)
.

Pendulum with vibrating pivot

G(0) =

(
0 1

∓
(
ω2 + επ4

)
−βω

)
, G(π) =

(
0 1

∓
(
ω2 − επ4

)
−βω

)
.



Comparison of resonance domains
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ϕ(τ) = cos(τ) ϕ(τ) = π
4 sign(cos(τ))



Conclusions

1. A new mechanical model of parametrically excited pendulum
is proposed.

2. Mathematically the model is equivalent to the pendulum with
vertically vibrating pivot.

3. For the new pendulum the stabilization of inverse vertical
position is possible only when its center of mass periodically
moves below the pivot, ly > l0.

4. There are both frequency stabilization and destabilization of
inverse vertical position

5. For small damping and excitation amplitude, instability
domains are very similar for excitations with the same first
harmonics.


