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Formulation of the problem

# — angle about

the mass center C

lc = mR? — central

moment of inertia

m and R — mass and radius
of the hula-hoop

k — coefficient of viscous friction
r — radius of the waist

F1 — friction force

N — reaction force

¢ — angle between x and CO’

x =asinwt, y=b coswt

IcO 4+ kO = —FrR
m(R—r)¢g=m(xsinp+ ycosp)+ Fr
m(R —r)¢? = m(Xcosp — ysing) + N

(R — r) ¢ = RO — non-slippage condition,
N > 0 — non-separability condition



Equation of motion and non-separability condition

k . w?(asinwtsing + bcoswt cos p)

2mR2w’ T 2(R—r) =0

©+
N=m(R—r)¢$*>+ muw?(asinwt cosp — bcoswtsing) > 0
we use simple trigonometric relations

b b

asinwtsin g + bcoswt cos p = ZEL cos(wt — ) — ; cos(wt + ),
asinwt cos p — bcoswtsinp= a+b sin(wt — ) + 252 sm(wt + ),

we introduce new time 7 = wt and dimensionless parameters

k a+b a—>b
= —— = - :7>
T omR2 M 4R —r) >0, e 4R—r)~ 0
¢+ + peos(p — 1) = e cos(p + 1) (1)

¢? — 2psin(p — 1) + 2 cos(p 4 7) > 0, (2)



Exact solution of the unperturbed equation
The unperturbed equation (¢ = 0)
$+7p+pcos(p—7)=0 (3)

has the exact solutions p = 7 + ¢ if |7| < p,
where constants g mod 27 are defined from ~ + 1 cos g = 0.
Asymptotic stability conditions

v >0, psingo <0, (4)

yield 0 < v < p.
Inseparability condition (2) takes the form

1—2pusingpg >0 (5)

The rotation is asymptotically stable and inseparable with
o = — arccos(—~/ ), while unstable rotation with

o = arccos(—v/ ) is inseparable only if u < \/1/4 +~2.



Approximate solution (¢ # 0)

We represent the solution as the series o = 7+ po + ep1(7) + . ..

2 N4 pcospg =0, (6)
e g1+ — psin(po) o1 = cos(po +27),  (7)
where we take po = — arccos(—~/p) corresponding to the stable

solution of the unperturbed system. Thus, (7) takes the form
B1+7¢1 + V2 — 7% 1 = cos(po + 27) (8)
and has the unique periodic solution
v1(1) = Csin(po + 27) + D cos(po + 27) (9)

2y _ —44+/ 2 —~?
, D=
3W2+,u2—8\/u2—”/2+16 372+u2—8\/u2—72+16

where C =



Stability analysis

We add a small perturbation ¢ = ¢, + u to the true solution ¢, of
(1) and linearize (1) w.r.t. u obtaining the Mathieu-Hill equation
with damping

U+ yu+ <\/ pu? =%+ 5<1>(2T)) u=0, (10)

where ® = (vC + 1)sin(27 + o) + 7D cos(27 + o) + O(e).
Stability condition (absence of parametric resonance in (10))

2
e < Ve 1;/2 e + o(¢) (11)

is also the stability condition for the original equation (1) according
to the Lyapunov's theorem.



Non-separability condition in the first approximation

Solution
p=T— arccos(—%) + eCsin(po + 27) + eD cos(po + 27) + o(¢)

We substitute it into condition (2) that the hula-hoop is not
separated from the waist

¢? — 2psin(p — 1) + 2 cos(p 4 7) > 0,

which is guaranteed for all 7 if the following inequality is satisfied

L4+2v/p2 =72 | 2 +392 =8/ p? =12 + 16
< + o(e).
2 (2 +8+v2 — 12/ 2 — 42 + 36




Comparison between approximate and numerical solutions
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If v and ~ are also small of order € then both direct and
reverse rotation are possible




Approximate solution when p and  are small

We represent the solution as the series

©=pT+¢o+epi(t)+... (12)

We introduce new not small parameters ji = /e, 4 =~/e.
First adjustment (5 is defined by the equation:

$1 = cos(pT + o + T) — ficos(pT + o — T) — Fp (13)

By equating separately constant and oscillation terms we find that
solutions exist only if angular velocity p € {1,0, —1}.
With p = 1 we get the first order adjustment

1
e1(1) = ~2 cos(po +27), cospg = —%



Stability and non-separability conditions with small v

Approximate solution with p =1
3 Y
p =T+ o~ ycos(po+27) +0(e), cospo= — (14)
Stability conditions in first approximation
0<vy<p, singyg <0 = pg= —arccos <—1> mod 27
I

Condition that the hula-hoop is not separated from the waist

14212 — 42
e < % + o(e). (15)



Stability and non-separability conditions with small v

Approximate solution with p = —1
0= —7'-|—<p0-|—%COS(<po—2T)+o(5), cos g = —g (16)
Stability conditions in first approximation
0<vy<e, singpg>0 = @y = arccos (—g) mod 27

Condition that the hula-hoop is not separated from the waist

142,/e2— 42
< % + o(e). (17)



Condition of coexistence of direct and reverse rotations

Condition of coexistence direct and reverse rotations
0 <~ < min{e, u} (18)

is obtained from combination of 0 < v < p (for direct rotation)
and 0 < 7y < ¢ (for reverse rotation), where both parameters ¢ and
1 are supposed to be small.

In physical variables (18) takes the form

R—r
2k — 1
0< R2om < a—|b (19)

i.e. the trajectory of the waist center should be sufficiently prolate.



Angular velocity of direct rotation
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Angular velocity of reverse rotation
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Conclusion

» Exact solutions for the hula-hoop under a circular excitation
are obtained and their stability is studied

» Approximate solutions for an elliptic excitation are found

» The non-separability condition of the hula-hoop from the waist
of a gymnast during rotation is derived

» The coexisting rotations for the direct and reverse rotations of
the hula-hoop are analyzed

» The analytical solutions are compared with the results of
numerical simulation
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