

Twirling of Hula-hoop: New Results

> A. O. Belyakov 1,2 A. P. Seyranian,²

¹Vienna University of Technology

²Lomonosov Moscow State University

25 July 2011

Literature

Caughey T.K.,

Hula-hoop: an example of heteroparametric excitation, American J. Physics, 1960. 28(2). pp. 104–109.

- 暈 Bogolyubov, N. N. and Mitropolsky, Yu. A. Asymptotic Methods in the Theory of Nonlinear Oscillations, Nauka, Moscow, 1961.
- 昂 I.I. Blekhman, Vibrational Mechanics, Fizmatlit, Moscow, 1994.
- 围 A.O. Belyakov and A.P. Seyranian, The hula-hoop problem, Doklady Physics, 2010, Vol. 55, No. 2, pp. 99–104.

Formulation of the problem

 $x = a \sin \omega t$, $y = b \cos \omega t$

 θ – angle about the mass center C $I_C = mR^2$ – central moment of inertia m and R – mass and radius of the hula-hoop k – coefficient of viscous friction r – radius of the waist F_T – friction force N – reaction force φ – angle between x and CO'

$$
I_C \ddot{\theta} + k \dot{\theta} = -F_T R
$$

\n
$$
m (R - r) \ddot{\varphi} = m (\ddot{x} \sin \varphi + \ddot{y} \cos \varphi) + F_T
$$

\n
$$
m (R - r) \dot{\varphi}^2 = m (\ddot{x} \cos \varphi - \ddot{y} \sin \varphi) + N
$$

 $(R - r) \dot{\varphi} = R \dot{\theta}$ – non-slippage condition, $N > 0$ – non-separability condition

Equation of motion and non-separability condition

$$
\ddot{\varphi} + \frac{k}{2mR^2\omega}\dot{\varphi} + \frac{\omega^2\left(a\sin\omega t\sin\varphi + b\cos\omega t\cos\varphi\right)}{2\left(R-r\right)} = 0
$$

 $N = m(R - r)\dot{\varphi}^2 + m\omega^2$ (a sin ωt cos $\varphi - b$ cos ωt sin $\varphi) > 0$

we use simple trigonometric relations

$$
a\sin\omega t \sin\varphi + b\cos\omega t \cos\varphi = \frac{a+b}{2} \cos(\omega t - \varphi) - \frac{a-b}{2} \cos(\omega t + \varphi),
$$

$$
a\sin\omega t \cos\varphi - b\cos\omega t \sin\varphi = \frac{a+b}{2} \sin(\omega t - \varphi) + \frac{a-b}{2} \sin(\omega t + \varphi),
$$

we introduce new time $\tau = \omega t$ and dimensionless parameters

$$
\gamma = \frac{k}{2mR^2\omega}, \quad \mu = \frac{a+b}{4(R-r)} > 0, \quad \varepsilon = \frac{a-b}{4(R-r)} \ge 0,
$$

$$
\ddot{\varphi} + \gamma \dot{\varphi} + \mu \cos(\varphi - \tau) = \varepsilon \cos(\varphi + \tau) \tag{1}
$$

$$
\dot{\varphi}^2 - 2\mu \sin(\varphi - \tau) + 2\varepsilon \cos(\varphi + \tau) > 0, \tag{2}
$$

Exact solution of the unperturbed equation

The unperturbed equation ($\varepsilon = 0$)

$$
\ddot{\varphi} + \gamma \dot{\varphi} + \mu \cos(\varphi - \tau) = 0 \tag{3}
$$

has the exact solutions $\varphi = \tau + \varphi_0$ if $|\gamma| \leq \mu$, where constants φ_0 mod 2π are defined from $\gamma + \mu \cos \varphi_0 = 0$. Asymptotic stability conditions

$$
\gamma > 0, \quad \mu \sin \varphi_0 < 0, \tag{4}
$$

yield $0 < \gamma < \mu$. Inseparability condition (2) takes the form

$$
1 - 2\mu \sin \varphi_0 > 0 \tag{5}
$$

The rotation is asymptotically stable and inseparable with $\varphi_0 = -\arccos(-\gamma/\mu)$, while unstable rotation with $\varphi_0 = -$ arccos($-\gamma/\mu$), while unstable rotation with $\varphi_0 = \arccos(-\gamma/\mu)$ is inseparable only if $\mu < \sqrt{1/4 + \gamma^2}$.

Approximate solution ($\varepsilon \neq 0$)

We represent the solution as the series $\varphi = \tau + \varphi_0 + \varepsilon \varphi_1(\tau) + \dots$

$$
\varepsilon^0: \qquad \gamma+\mu\cos\varphi_0=0,\tag{6}
$$

$$
\varepsilon^1: \quad \ddot{\varphi}_1 + \gamma \dot{\varphi}_1 - \mu \sin(\varphi_0) \varphi_1 = \cos(\varphi_0 + 2\tau), \quad (7)
$$

where we take $\varphi_0 = -\arccos(-\gamma/\mu)$ corresponding to the stable solution of the unperturbed system. Thus, (7) takes the form

$$
\ddot{\varphi}_1 + \gamma \dot{\varphi}_1 + \sqrt{\mu^2 - \gamma^2} \varphi_1 = \cos(\varphi_0 + 2\tau) \tag{8}
$$

and has the unique periodic solution

$$
\varphi_1(\tau) = C \sin(\varphi_0 + 2\tau) + D \cos(\varphi_0 + 2\tau) \tag{9}
$$

where
$$
C = \frac{2\gamma}{3\gamma^2 + \mu^2 - 8\sqrt{\mu^2 - \gamma^2} + 16}
$$
, $D = \frac{-4 + \sqrt{\mu^2 - \gamma^2}}{3\gamma^2 + \mu^2 - 8\sqrt{\mu^2 - \gamma^2} + 16}$

Stability analysis

We add a small perturbation $\varphi = \varphi_* + u$ to the true solution φ_* of (1) and linearize (1) w.r.t. u obtaining the Mathieu-Hill equation with damping

$$
\ddot{u} + \gamma \dot{u} + \left(\sqrt{\mu^2 - \gamma^2} + \varepsilon \Phi(2\tau)\right) u = 0, \qquad (10)
$$

where $\Phi = (\gamma C + 1) \sin(2\tau + \varphi_0) + \gamma D \cos(2\tau + \varphi_0) + O(\varepsilon)$. Stability condition (absence of parametric resonance in (10))

$$
\varepsilon < \frac{2\gamma}{\sqrt{(\gamma C + 1)^2 + \gamma^2 D^2}} + o(\varepsilon)
$$
 (11)

is also the stability condition for the original equation (1) according to the Lyapunov's theorem.

Non-separability condition in the first approximation

Solution
\n
$$
\varphi = \tau - \arccos(-\frac{\gamma}{\mu}) + \varepsilon C \sin(\varphi_0 + 2\tau) + \varepsilon D \cos(\varphi_0 + 2\tau) + o(\varepsilon)
$$

We substitute it into condition (2) that the hula-hoop is not separated from the waist

$$
\dot{\varphi}^2 - 2\mu \sin(\varphi - \tau) + 2\varepsilon \cos(\varphi + \tau) > 0,
$$

which is guaranteed for all τ if the following inequality is satisfied

$$
\varepsilon<\frac{1+2\sqrt{\mu^2-\gamma^2}}{2}\sqrt{\frac{\mu^2+3\gamma^2-8\sqrt{\mu^2-\gamma^2}+16}{\mu^2+8\gamma^2-12\sqrt{\mu^2-\gamma^2}+36}}+o(\varepsilon).
$$

Comparison between approximate and numerical solutions

If μ and γ are also small of order ε then both direct and reverse rotation are possible

Approximate solution when μ and γ are small

We represent the solution as the series

$$
\varphi = \rho \tau + \varphi_0 + \varepsilon \varphi_1(\tau) + \dots \tag{12}
$$

We introduce new not small parameters $\tilde{\mu} = \mu/\varepsilon$, $\tilde{\gamma} = \gamma/\varepsilon$. First adjustment φ_1 is defined by the equation:

$$
\ddot{\varphi}_1 = \cos(\rho \tau + \varphi_0 + \tau) - \tilde{\mu}\cos(\rho \tau + \varphi_0 - \tau) - \tilde{\gamma}\rho \tag{13}
$$

By equating separately constant and oscillation terms we find that solutions exist only if angular velocity $\rho \in \{1, 0, -1\}$. With $\rho = 1$ we get the first order adjustment

$$
\varphi_1(\tau)=-\frac{1}{4}\cos(\varphi_0+2\tau)\,,\quad \cos\varphi_0=-\frac{\gamma}{\mu}
$$

Stability and non-separability conditions with small μ $\mu \gamma$ Approximate solution with $\rho = 1$

$$
\varphi = \tau + \varphi_0 - \frac{\varepsilon}{4}\cos{(\varphi_0 + 2\tau)} + o(\varepsilon), \quad \cos{\varphi_0} = -\frac{\gamma}{\mu} \qquad (14)
$$

Stability conditions in first approximation

$$
0<\gamma<\mu, \quad \sin\varphi_0<0 \ \Rightarrow \ \varphi_0=-\arccos\left(-\frac{\gamma}{\mu}\right) \mod 2\pi
$$

Condition that the hula-hoop is not separated from the waist

$$
\varepsilon<\frac{1+2\sqrt{\mu^2-\gamma^2}}{3}+o(\varepsilon).\qquad \qquad (15)
$$

Stability and non-separability conditions with small μ $\mu \gamma$

Approximate solution with $\rho = -1$

$$
\varphi = -\tau + \varphi_0 + \frac{\mu}{4}\cos{(\varphi_0 - 2\tau)} + o(\varepsilon), \quad \cos{\varphi_0} = -\frac{\gamma}{\varepsilon} \quad (16)
$$

Stability conditions in first approximation

$$
0<\gamma<\varepsilon,\quad \sin\varphi_0>0\,\Rightarrow\,\varphi_0=\arccos\left(-\frac{\gamma}{\varepsilon}\right)\mod 2\pi
$$

Condition that the hula-hoop is not separated from the waist

$$
\mu < \frac{1 + 2\sqrt{\varepsilon^2 - \gamma^2}}{3} + o(\varepsilon). \tag{17}
$$

Condition of coexistence of direct and reverse rotations

Condition of coexistence direct and reverse rotations

$$
0 < \gamma < \min\{\varepsilon, \mu\} \tag{18}
$$

is obtained from combination of $0 < \gamma < \mu$ (for direct rotation) and $0 < \gamma < \varepsilon$ (for reverse rotation), where both parameters ε and μ are supposed to be small.

In physical variables (18) takes the form

$$
0<2k\frac{R-r}{R^2\omega m} (19)
$$

i.e. the trajectory of the waist center should be sufficiently prolate.

Angular velocity of direct rotation

Angular velocity of reverse rotation

Conclusion

- \triangleright Exact solutions for the hula-hoop under a circular excitation are obtained and their stability is studied
- \triangleright Approximate solutions for an elliptic excitation are found
- \triangleright The non-separability condition of the hula-hoop from the waist of a gymnast during rotation is derived
- \blacktriangleright The coexisting rotations for the direct and reverse rotations of the hula-hoop are analyzed
- \triangleright The analytical solutions are compared with the results of numerical simulation

```
暈
A.P. Seyranian and A.O. Belyakov,
How to twirl a hula hoop,
American Journal of Physics, 2011, Vol. 79, Issue 7,
pp. 712–715.
```