
Twirling of Hula-hoop:
New Results

A. O. Belyakov 1,2

A. P. Seyranian,2

1Vienna University of Technology

2Lomonosov Moscow State University

25 July 2011



Literature

Caughey T.K.,
Hula-hoop: an example of heteroparametric excitation,
American J. Physics, 1960. 28(2). pp. 104–109.

Bogolyubov, N. N. and Mitropolsky, Yu. A.
Asymptotic Methods in the Theory of Nonlinear Oscillations,
Nauka, Moscow, 1961.

I.I. Blekhman,
Vibrational Mechanics,
Fizmatlit, Moscow, 1994.

A.O. Belyakov and A.P. Seyranian,
The hula-hoop problem,
Doklady Physics, 2010, Vol. 55, No. 2, pp. 99–104.



Formulation of the problem

x = a sinωt, y = b cosωt

θ – angle about
the mass center C
IC = mR2 – central
moment of inertia
m and R – mass and radius
of the hula-hoop
k – coefficient of viscous friction
r – radius of the waist
FT – friction force
N – reaction force
ϕ – angle between x and CO ′

IC θ̈ + k θ̇ = −FTR
m (R − r) ϕ̈ = m (ẍ sinϕ + ÿ cosϕ) + FT

m (R − r) ϕ̇2 = m (ẍ cosϕ− ÿ sinϕ) + N

(R − r) ϕ̇ = R θ̇ – non-slippage condition,
N > 0 – non-separability condition



Equation of motion and non-separability condition

ϕ̈ +
k

2mR2ω
ϕ̇ +

ω2 (a sinωt sinϕ + b cosωt cosϕ)

2 (R − r)
= 0

N = m (R − r) ϕ̇2 + m ω2 (a sinωt cosϕ− b cosωt sinϕ) > 0

we use simple trigonometric relations

a sinωt sinϕ + b cosωt cosϕ= a+b
2 cos(ωt − ϕ)− a−b

2 cos(ωt + ϕ),

a sinωt cosϕ− b cosωt sinϕ= a+b
2 sin(ωt − ϕ) + a−b

2 sin(ωt + ϕ),

we introduce new time τ = ωt and dimensionless parameters

γ =
k

2mR2ω
, µ =

a + b

4(R − r)
> 0, ε =

a− b

4(R − r)
≥ 0,

ϕ̈ + γϕ̇ + µ cos(ϕ− τ) = ε cos(ϕ + τ) (1)

ϕ̇2 − 2µ sin(ϕ− τ) + 2ε cos(ϕ + τ) > 0, (2)



Exact solution of the unperturbed equation
The unperturbed equation (ε = 0)

ϕ̈ + γϕ̇ + µ cos(ϕ− τ) = 0 (3)

has the exact solutions ϕ = τ + ϕ0 if |γ| ≤ µ,
where constants ϕ0 mod 2π are defined from γ + µ cosϕ0 = 0.
Asymptotic stability conditions

γ > 0, µ sinϕ0 < 0, (4)

yield 0 < γ < µ.
Inseparability condition (2) takes the form

1− 2µ sinϕ0 > 0 (5)

The rotation is asymptotically stable and inseparable with
ϕ0 = − arccos(−γ/µ), while unstable rotation with
ϕ0 = arccos(−γ/µ) is inseparable only if µ <

√
1/4 + γ2.



Approximate solution (ε 6= 0)

We represent the solution as the series ϕ = τ + ϕ0 + εϕ1(τ) + . . .

ε0 : γ + µ cosϕ0 = 0, (6)
ε1 : ϕ̈1 + γϕ̇1 − µ sin(ϕ0) ϕ1 = cos(ϕ0 + 2τ), (7)

where we take ϕ0 = − arccos(−γ/µ) corresponding to the stable
solution of the unperturbed system. Thus, (7) takes the form

ϕ̈1 + γϕ̇1 +
√

µ2 − γ2 ϕ1 = cos(ϕ0 + 2τ) (8)

and has the unique periodic solution

ϕ1(τ) = C sin(ϕ0 + 2τ) + D cos(ϕ0 + 2τ) (9)

where C = 2γ

3γ2+µ2−8
√

µ2−γ2+16
, D =

−4+
√

µ2−γ2

3γ2+µ2−8
√

µ2−γ2+16



Stability analysis

We add a small perturbation ϕ = ϕ∗ + u to the true solution ϕ∗ of
(1) and linearize (1) w.r.t. u obtaining the Mathieu-Hill equation
with damping

ü + γu̇ +
(√

µ2 − γ2 + εΦ(2τ)
)

u = 0, (10)

where Φ = (γC + 1) sin(2τ + ϕ0) + γD cos(2τ + ϕ0) + O(ε).
Stability condition (absence of parametric resonance in (10))

ε <
2γ√

(γC + 1)2 + γ2D2
+ o(ε) (11)

is also the stability condition for the original equation (1) according
to the Lyapunov’s theorem.



Non-separability condition in the first approximation

Solution
ϕ = τ − arccos

(
− γ

µ

)
+ εC sin(ϕ0 + 2τ) + εD cos(ϕ0 + 2τ) + o(ε)

We substitute it into condition (2) that the hula-hoop is not
separated from the waist

ϕ̇2 − 2µ sin(ϕ− τ) + 2ε cos(ϕ + τ) > 0,

which is guaranteed for all τ if the following inequality is satisfied

ε <
1 + 2

√
µ2 − γ2

2

√
µ2 + 3γ2 − 8

√
µ2 − γ2 + 16

µ2 + 8γ2 − 12
√

µ2 − γ2 + 36
+ o(ε).



Comparison between approximate and numerical solutions
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If µ and γ are also small of order ε then both direct and
reverse rotation are possible



Approximate solution when µ and γ are small

We represent the solution as the series

ϕ = ρτ + ϕ0 + εϕ1(τ) + . . . (12)

We introduce new not small parameters µ̃ = µ/ε, γ̃ = γ/ε.
First adjustment ϕ1 is defined by the equation:

ϕ̈1 = cos(ρτ + ϕ0 + τ)− µ̃ cos(ρτ + ϕ0 − τ)− γ̃ρ (13)

By equating separately constant and oscillation terms we find that
solutions exist only if angular velocity ρ ∈ {1, 0,−1}.
With ρ = 1 we get the first order adjustment

ϕ1(τ) = −1

4
cos(ϕ0 + 2τ) , cosϕ0 = −γ

µ



Stability and non-separability conditions with small µ и γ

Approximate solution with ρ = 1

ϕ = τ + ϕ0 − ε

4
cos (ϕ0 + 2τ) + o(ε), cosϕ0 = −γ

µ
(14)

Stability conditions in first approximation

0 < γ < µ, sinϕ0 < 0 ⇒ ϕ0 = − arccos

(
−γ

µ

)
mod 2π

Condition that the hula-hoop is not separated from the waist

ε <
1 + 2

√
µ2 − γ2

3
+ o(ε). (15)



Stability and non-separability conditions with small µ и γ

Approximate solution with ρ = −1

ϕ = −τ + ϕ0 +
µ

4
cos (ϕ0 − 2τ) + o(ε), cosϕ0 = −γ

ε
(16)

Stability conditions in first approximation

0 < γ < ε, sinϕ0 > 0 ⇒ ϕ0 = arccos
(
−γ

ε

)
mod 2π

Condition that the hula-hoop is not separated from the waist

µ <
1 + 2

√
ε2 − γ2

3
+ o(ε). (17)



Condition of coexistence of direct and reverse rotations

Condition of coexistence direct and reverse rotations

0 < γ < min{ε, µ} (18)

is obtained from combination of 0 < γ < µ (for direct rotation)
and 0 < γ < ε (for reverse rotation), where both parameters ε and
µ are supposed to be small.
In physical variables (18) takes the form

0 < 2k
R − r

R2ωm
< a− |b| (19)

i.e. the trajectory of the waist center should be sufficiently prolate.



Angular velocity of direct rotation
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Angular velocity of reverse rotation
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Conclusion

I Exact solutions for the hula-hoop under a circular excitation
are obtained and their stability is studied

I Approximate solutions for an elliptic excitation are found
I The non-separability condition of the hula-hoop from the waist

of a gymnast during rotation is derived
I The coexisting rotations for the direct and reverse rotations of

the hula-hoop are analyzed
I The analytical solutions are compared with the results of

numerical simulation
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