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Abstract— Linear oscillator with limited excitation force
(control) is under consideration. The optimal control, which
led oscillatory system to a certain energy level from any initial
conditions at minimum time, is found. The control synthesis
is made. I. e. time in control function is excluded by current
system phase variables (coordinate and velocity). Quasi-optimal
synthesized control function is obtained for one-dimensional
oscillatory system with unknown parameters. Multidimensional
case is considered on the supposition that excitation forces are
small.

I. OPTIMAL CONTROL IN ONE-DIMENSIONAL CASE

Let as consider a one-dimensional linear oscillator with

the limited control force u∗

ẍ1 + ω2x1 = m−1u∗, |u∗| ≤ u∗
m, (1)

where x1 is the scalar variable, m is the mass, and ω is

the frequency of free vibrations. It is necessary to find a

function u∗, which brings oscillatory system (1) with the

initial conditions x1(0), ẋ1(0) to the given energy level

characterized by the amplitude a at the minimal time.

Let us rewrite equation (1) in the Cauchy form

�̇x =
(

0 ω
−ω 0

)
�x +

(
0

ωu

)
, �x(0) = �x0, (2)

where the vector �x = (x1, ω−1ẋ1)T , and the function

u = m−1ω−2u∗. The constancy condition of the mechanical

energy with oscillation amplitude a gives the equation of the

surface in the phase space, to which the system needs to be

brought

Φ(�x) = a2 − x2
1 − x2

2 = 0. (3)

We will solve the problem of optimal control by Pon-

tryagin’s maximum principle for the case where time is the

objective functional [1]. For this purpose we consider the

system adjoint to (2)

�̇ψ =
(

0 ω
−ω 0

)
�ψ,

which has the solution

ψ1 = Cψ sin(ωt + ϕ),
ψ2 = Cψ cos(ωt + ϕ). (4)

The Hamiltonian of the problem has the form

H = ψ0 + ωuψ2 + ωx2ψ1 − ωx1ψ2 ≡ 0, (5)

where ψ0 < 0. The necessary optimality conditions for the

control function u are given by the Pontryagin maximum

principle. It is maximum condition

max
u

H (6)

with the transversality conditions

ψi(T ) = c
∂Φ
∂xi

∣∣∣∣
t=T

, (7)

where T is the final time moment.

In the problem under consideration we have from the

maximum condition (6)

u = umsign (ψ2) , (8)

with um = m−1ω−2u∗
m. The transversality conditions (7)

give

ψ1 = cx1,

ψ2 = cx2. (9)

Now we can express the optimal control via phase variables

using the conditions of maximum (8) and transversality (9)

along with the solution of the adjoint problem (4). Is means

that we produce synthesis of control.

A. The synthesis of control

Synthesized control function u does not depend on time

but it depends on the phase variables (coordinate and veloc-

ity). Hence it is valid for any initial conditions and brings

system to the required position regardless of fluctuations.

This is more useful in practice and is always desirable.

Optimal control is equal either to um or −um due to

the maximum condition (8). Thus, the optimal trajectory of

system (2) on the phase plane consists of arcs of concentric

circles with the centers at the points (um, 0) or (−um, 0).
A set of points where the trajectory becomes an arc of a

circle with the other center is called the switching line. To

synthesize the optimal control means to find the switching

line and to determine the sign of the control function u on

both sides of the switching line.

The case when a = 0 is a classical example of the problem

of optimal control with time as the objective functional

considered by D.W. Bushaw [2], [1]. The switching line and

the optimal trajectory for a = 0 are shown in Figure 1.

To draw the switching line for 0 < a < um (see Figure

2) we note from adjoint system solution (4) that between
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Fig. 1. Switching line and optimal trajectory example for a = 0

Fig. 2. Switching line for 0 < a < um

two switches the affix must pass the angle π on the same

circumference around it’s center. Thus, the switching line is

symmetric with respect to the origin. Considering the process

in the inverse time from the terminal surface (3) we can see

from the transversality conditions (9) and solution of the

adjoint problem (4) where should the first (in inverse time)

switch occur depending on the initial point on the terminal

surface (3).

Let us find an angle β after passing which the first (in

inverse time) switch occurs. From solution (4) for the adjoint

system we get

sin(β) =
ψ2(T )√

ψ2
1(T ) + ψ2

2(T )
(10)

Using transversality conditions (9) this formula can be ex-
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Fig. 3. Switching line for a = um
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Fig. 4. Switching line for a > um

pressed through x1 and x2

sin(β) =
c x2(T )

|c|
√

x2
1(T ) + x2

2(T )
. (11)

After taking into consideration the terminal surface equation

(3) we find

sin(β) = ± x2(T )/a. (12)

Thus, noting that in inverse time the affix must move

counterclockwise (i. e. β > 0) we get

β = arcsin(|x2(T )|/a). (13)

For instance, it is clearly seen that if we start from the point

(0,−a) the control will be switched after passing the angle

π/2 around the point (um, 0). For drawing switching line

near the origin (see for example Figure 3) we note from the

system (1) that time is proportional to the sum of the angles
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Fig. 5. Optimal and quasi-optimal trajectories for a > um.

passed by affix on the arches. Similarly, the switching line

a > um is obtained (see Figure 4).

B. The synthesis of control at a � um with unknown system
parameters

In practice it is often impossible to gain frequency of a

system whose oscillations should be caused by the control u.

For example, it is impossible when the problem is to find the

frequency of the system from its oscillations. Even the exact

value of the control bound um cannot always be provided.

Therefore, we can’t draw the switching line as we did earlier.

However, when a � um the abscissa axis can be taken as

a switching line (see Figure 4). The control function

u =

⎧⎨
⎩

umsign (x2) when x2
1 + x2

2 < a2

0 when x2
1 + x2

2 = a2

−umsign (x2) when x2
1 + x2

2 > a2

in this case takes the form

u = −umsign (Φ (�x)) sign

(
∂Φ
∂x2

)
. (14)

In previous sections we obtained optimal control. The control

function (14) is not optimal. But it is the closer to optimal

the greater a than um (see Figure 4).

C. Maximal time of the system excitation

Now we can estimate the time T for the case when

a � um and x1(0) = ẋ1(0) = 0. It is easy to see from

Figure 4 that during one period the amplitude of the system

oscillations is changed at the quantity 4 Um. Thus, dividing

a by 4 Um and multiplying by period 2π/ω we get

T =
π a

2 um ω
. (15)

After substitution of um = m−1ω−2u∗
m finally we obtain

T =
π a m ω

2 u∗
m

. (16)

Let as determine how time (16) differs from optimal

time. On Figure 5 we can see the differences between the

trajectories on phase plane for optimal control (solid line)

and for quasi-optimal control (14) (dash line). As for the

time of the process is proportional to the sum of angles that

affix passes on arcs around different centers let as compare

this sums for optimal and quasi-optimal processes. Without

loss of generality we can consider processes beginning from

point A. Optimal trajectory passes angle α on the arc around

point (um, 0), then the trajectory makes n turns by π in tern

around −(um, 0) and (um, 0) and finally passes angle β from

point C to point D placed on the terminal surface. Thus we

have the following angle sums

α + 2πn + β − optimal process,
2πn + γ − quasi-optimal process.

As for the optimal process has minimal angle sum we can

write the following inequality

γ � α + β (17)

Besides, we can see from the Figure 5, that point D is placed

left from point F on the terminal surface, thus the following

inequality is valid

β � γ − δ.

Adding to the left side of this inequality nonnegative angle

α and taking into consideration inequality (17) we get

γ � α + β � γ − δ.

At a � um angle δ ∼ um/a, therefore we can write the

following

γ = α + β + O(um/a).

Adding the angle 2πn to both sides of the latter equation

and dividing them by ω, we obtain the following expression

for the time of quasi-optimal process

T = T0 +
O(um/a)

ω
,

where T0 is the time of optimal process. Thus the time (16)

can be considered as optimal accurate to the value

O(um/a)
ω

.

The same time estimation can be obtained with initial point

within the terminal surface but not close to coordinate origin.

If the initial point is near to coordinate origin the difference

between the quasi-optimal and the optimal process times not

exceeds the value π/ω.

In comparison with excitation by sinusoidal force of the

same amplitude u∗
m

ẍ + ω2x = u∗
m sin(t)/m, x(0) = ẋ(0) = 0 (18)

excitation by force (14) provides the time which is in 4/π
times shorter.

II. MINIMAL TIME ESTIMATION FOR EXCITATION OF

MULTI-DIMENSIONAL SYSTEM

Multi-dimensional linear conservative system is governed

by the equation

M�̈x + K�x = B∗�u, �x(0) = �̇x(0) = 0, (19)

|uj | ≤ Uj , j = 1, . . . , m , (20)
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where the matrices M and K are symmetrical and positive

definite, �x is the vector of variables of dimension n, �u is

control vector of dimension m, B∗ is n×m control matrix.

The problem is to estimate the minimal time, at which all the

modes of system’s oscillations can achieve the corresponding

energy levels.

It is well known that there is a linear change of coordinates

with the matrix S, which transforms the matrix M to the

identity matrix and the matrix K to a diagonal matrix ω2

containing the squared natural frequencies ω2
i of the system

�̈z + ω2�z = B�u, �z(0) = �̇z(0) = 0, (21)

where �z is the vector of normal coordinates, and B = ST B∗.

Each of the equations

z̈i + ω2
i zi = (B�u)i, zi(0) = żi(0) = 0, (22)

coincides with (1) up to notation.

Using time estimation (16) for one-dimensional oscillator

(1) we can select a multi-dimensional oscillator mode with

maximum excitation time in the case when all control is

directed to this mode excitation. Thus, we obtain minimal

time estimation for multi-dimensional oscillator

Tmin =
π

2
max

i

⎡
⎣aiωi

/ m∑
j=1

(|Bij |Uj)

⎤
⎦ , (23)

where ai is the given terminal amplitude of the i-th normal

coordinate.

III. CONCLUDING REMARKS

In the presented paper, on the base of the synthesis of

quasi-optimal control for one-dimensional oscillator we have

obtained time estimation for excitation of oscillations. Quasi

optimal time estimation tends to optimal when ratio of

control limitation to the terminal amplitude tends to zero.

Then, with this estimation we have derived the minimal

excitation time for multi-dimensional oscillator. The obtained

result can be used for testing the effectiveness of feedback

algorithms for multi-dimensional systems.
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